Abstract
In recent years, there has been increased interest in developing inorganic and composite membranes for in-situ separation of hydrogen to achieve an equilibrium shift in catalytic membrane reactors. The productivity of these membrane reactors, however, is severely limited by the poor permeability and selectivity of available membranes. To develop a new class of permselective inorganic membranes, electroless plating has been used to deposit palladium thin-films on a microporous ceramic substrate. A palladium thin-film coating was deposited on a microporous ceramic disk (α-alumina, φ 39 mm × 2 mm thickness, nominal pore size 150 nm and open porosity ≈ 42%) by electroless deposition. The film was evaluated by SEM and EDX analysis. A steady-state counter-diffusion method, using gas chromatographic analysis, was used to evaluate the permeability and selectivity of the composite palladium membrane for hydrogen separation at temperatures from 373 to 573 K. The pressure on the high pressure side of the membrane ranged from 170 to 240 kPa and the low pressure side was maintained at 136 kPa. The measured hydrogen permeabilities at 573 K were found to be 1.462×10−9 mol·m/m2·s·Pa0.778, and 3.87×10−8 mol · m/m2 · s · Pa0.501 for palladium film thicknesses of 8.5 and 12 μm, respectively. The results indicate that the membrane has both high permeability and selectivity for hydrogen and may find applications in high temperature hydrogen separation and membrane reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.