Abstract

Electrical resistivity tomography (ERT) is a widely used tool in near surface geophysical surveys for the investigation of various geological and engineering problems, including landslides. In this study, the internal structure of the southern region of the Kualiangzi landslide, which is located in Sichuan province, China, was investigated using four ERT profiles, drill cores, and inclinometer data. The characteristics of the groundwater circulation were evaluated from variations in electrical resistivity and groundwater level. The results showed that the sliding surface corresponds to a deep zone with low resistivity and that the sliding material consists of clay, gravelly soil, and weathered sandstone and mudstone. The thickness of the sliding material is 50m in the main tension trough and decreases to several meters in the direction of sliding. The dip angle of the sliding surface that has low resistivity is generally consistent with that of the bedrock. The groundwater level in the tension trough and in the middle transitional part from hill-country to flat terrain was highest in the landslide. The groundwater level close to the toe front of the landslide was the lowest. The groundwater is recharged by the precipitation and generally drains to the toe front by seasonal springs along the sliding surface. The rapid increment of the groundwater level in the tension trough kept pace with that of the displacement rate after intense rainfall. The improved understanding of internal structure and groundwater recirculation is beneficial for the analysis of the mechanisms of translational landslides and their hazard prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.