Abstract

Coke drums are pressure vessels that are used in oil sands and conventional refinery processing industries for the thermal cracking of reduced bitumen to recover additional, saleable gas and liquid product streams. The drums are constructed to the requirements of ASME VIII Division 1 although they are in a low cycle thermal-mechanical service environment. Recent practice has been to introduce design by analysis considerations from ASME VIII Division 2 even though service temperatures of the actual equipment exceed the design limits of the Code. In this paper, simplified elastic-plastic analysis models are developed for assessment of the stress and strain levels in coke drums during specific operational phases. One model is applied for determination of the local stress caused by differences in the coefficients of thermal expansion between the clad liner and base materials. Because clad construction is used throughout the vessel, the impact is extensive. Consideration is given to the general stresses induced by the cyclical, progressive dilation and contraction action of the drum shell caused by axial thermal gradients. Another model estimates hot and cold spot formation and the development of localized stress / strain distributions in coke drums. The resulting thermal stresses include the local stress from suppression of differential expansion between clad and base material, thermal bending stresses and local thermal stresses from hot and cold spot formation. It is found that the evaluation of these loads on drum cracking aligns with industry survey results. Better understanding of these loads has impact on materials selection and fabrication procedures for new drums and repair of existing drums. Operational considerations can also be identified to help improve drum reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.