Abstract

In this study, we investigated the potential of an elastic salmon collagen gel (e-gel) for use as stretching culture scaffold. First, human umbilical vein endothelial cells (HUVECs) were cultured on the e-gel under static condition, and their growth was evaluated by DNA content measurement, MTT test, and scanning electron microscopy. The results demonstrated steady increases in cell number with culture time. Next, HUVECs were cultured on the e-gel under static condition for 2 d, then uniaxially stretched at a constant frequency (10% elongation at 1 Hz). After the stretching culture for 2 h, the cells oriented perpendicularly to the stretch direction. Moreover, the interleukin-6 and interleukin-8 productions of the cells significantly increased under the stretch condition compared with those under the static condition. These results were in good agreement with the published data in which an elastic silicone membrane was used as a scaffold. In conclusion, the e-gel can be used for stretching culture for vascular tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call