Abstract

Since the elastic recoil detection analysis (ERDA) technique has the advantages of high sensitivity and deep information in analyzing the light elements, it plays an important role in the study of helium behavior in materials. Helium embrittlement is one of the main reasons for the degradation of the Hastelloy N alloy, which has been considered as the promising candidate structural material for the further molten salt reactor. In this work, the profile of helium concentrationin sample of Hastelloy N alloy was analyzed by ERDA experiments applying grazing-incidence geometry. However, the result was limited within the depth range of 0~175 nm, and it shown that helium atoms escaped in the range from the irradiated surface of the sample to the depth of ~33 nm when annealing the sample at 800℃ The annealing at higher temperature (1 050℃) increased the escape of helium atoms, but a small fraction of helium atoms still trapped in the sample. In addition, the profile of helium concentration was obtained in the helium-irradiated pure nickel film in the depth range of 0~950 nm, using the ERDA experiments in transmission geometry. This indicates that the diffusion behavior of helium atoms in bulk samples can be completely obtained using the ERDA experiments in tranmission geometry if the bulk material can be prepared into a thin film sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call