Abstract
Earthquake-induced liquefaction is one of the major causes of catastrophic earth dam failure. In order to assess the liquefaction potential and analyze the seismic performance of an earth dam in Fujian, Southeastern China, the in situ shear wave velocity test was firstly carried out. Results indicate that the gravelly filling is a type of liquefiable soil at present seismic setting. Then the effective stress model was adopted to thoroughly simulate the response of the soil to a proposed earthquake. Numerical result generally coincides with that of the empirical judgment based on in situ test. Negative excess pore pressure developed in the upper part of the saturated gravelly filling and positive excess pore pressure developed in the lower part. The excess pore pressure ratio increases with depth until it reaches a maximum value of 0.45. The displacement of the saturated gravelly soil is relatively small and tolerable. Results show that the saturated gravelly filling cannot reach a fully liquefied state. The dam is overall stable under the proposed earthquake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.