Abstract

Forecasts from seven air quality models and surface ozone data collected over the eastern USA and southern Canada during July and August 2004 provide a unique opportunity to assess benefits of ensemble-based ozone forecasting and devise methods to improve ozone forecasts. In this investigation, past forecasts from the ensemble of models and hourly surface ozone measurements at over 350 sites are used to issue deterministic 24-h forecasts using a method based on dynamic linear regression. Forecasts of hourly ozone concentrations as well as maximum daily 8-h and 1-h averaged concentrations are considered. It is shown that the forecasts issued with the application of this method have reduced bias and root mean square error and better overall performance scores than any of the ensemble members and the ensemble average. Performance of the method is similar to another method based on linear regression described previously by Pagowski et al., but unlike the latter, the current method does not require measurements from multiple monitors since it operates on individual time series. Improvement in the forecasts can be easily implemented and requires minimal computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.