Abstract
Small particles ranging from approximately 0.1 µm to several micrometers in size, which include detrital material, bacteria, and other planktonic microorganisms, make a significant contribution to light scattering in the upper ocean. The scattering properties of these particles are strongly dependent on their size, which is difficult to measure in the submicrometer range with commonly used electronic resistive counters and microscopic techniques. We examined the size of small marine particles by application of the dynamic light scattering (DLS) method. In this method the time-dependent autocorrelation function of scattered intensity by particles undergoing Brownian motion provides information about the size of particles. The samples were collected in clear oceanic waters off the coast of Southern California. The mean hydrodynamic diameter of particles, determined from the DLS measurements at a scattering angle of 45°, was 0.54µ m. This indicates that the major contribution to scattering at this angle comes rom submicrometer particles. We also described an inverse method for estimating the general slope of the size distribution of small marine particles from the mean hydrodynamic diameter. This method is based on calculations of the size distribution weighted by distribution from Mie theory and assumes that a power-law approximation represents the actual particle scattered intensity. These calculations suggested that particulate assemblage in our seawater samples was best characterized by a differential size distribution with a slope of -4.35. This estimation was supported by independent measurements of particle size distribution and the spectral beam attenuation coefficient taken from the same samples as those used for the DLS measurements. We also demonstrated that multiangle DLS measurements may be used to determine the representative value of the refractive index of particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.