Abstract

Digital Particle Imaging Velocimetry (DPIV) is a planar velocity measurement technique that continues to be applied to new and challenging engineering research facilities while significantly reducing facility test time. DPIV was used in the GRC Nozzle Acoustic Test Rig (NATR) to characterize the high temperature (560 C), high speed (is greater than 500 m/s) flow field properties of mixing enhanced jet engine nozzles. The instantaneous velocity maps obtained using DPIV were used to determine mean velocity, rms velocity and two-point correlation statistics to verify the true turbulence characteristics of the flow. These measurements will ultimately be used to properly validate aeroacoustic model predictions by verifying CFD input to these models. These turbulence measurements have previously not been possible in hot supersonic jets. Mapping the nozzle velocity field using point based techniques requires over 60 hours of test time, compared to less than 45 minutes using DPIV, yielding a significant reduction in testing time. A dual camera DPIV configuration was used to maximize the field of view and further minimize the testing time required to map the nozzle flow. The DPIV system field of view covered 127 by 267 mm. Data were acquired at 19 axial stations providing coverage of the flow from the nozzle exit to 2.37 in downstream. At each measurement station, 400 image frame pairs were acquired from each camera. The DPIV measurements of the mixing enhanced nozzle designs illustrate the changes in the flow field resulting in the reduced noise signature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call