Abstract

Wastewater containing pentachlorophenol (PCP) was treated by granular activated carbon (GAC) adsorption and double-dielectric barrier discharge (D-DBD) plasma. A packed bed D-DBD reactor was applied for removal of PCP on GAC and GAC regeneration, where the discharge gap was filled with GAC. PCP degradation efficiency of 65% and GAC regeneration efficiency (RE) of 87% were achieved. Effects of discharge power, treatment time and O2 flow rate on PCP degradation and GAC regeneration were investigated. Increasing discharge power, treatment time and O2 flow rate were favorable for PCP degradation, and also contributed to GAC RE. C–Cl bonds in PCP were cleaved by D-DBD plasma. Effect of D-DBD plasma on physical and chemical properties of GAC during GAC regeneration process was characterized by N2 adsorption and Boehm titration. This study is expected to demonstrate the feasibility of applying D-DBD plasma for efficient organic wastewater treatment by coupling with GAC adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.