Abstract
The future High Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN will include the low-beta inner triplets (Q1, Q2a/b, Q3) for two LHC insertion regions. The Q1, Q3 components consist of eight 10 m-long LMQXFA cryo-assemblies fabricated by the HL-LHC Accelerator Upgrade Project. Each LMQXFA Cold mass contains two Nb3Sn magnets connected in series. A stainless-steel shell is welded around the two magnets before the insertion into the cryostat. There is a limit on how much coil preload increase induced by the shell welding is allowed. Distributed Rayleigh backscattering fiber optics sensors were used for the first time to obtain a strain map over a wide area of a Nb3Sn magnet cold mass shell. Data were collected during welding of the first LMQXFA cold mass and the results confirm that the increase of the coil pole azimuthal pre-stress after welding do not exceed requirements.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.