Abstract

The advent of fiber optic technology in geophysics exploration has grown in its use in the exploration, production, and monitoring of subsurface environments, revolutionizing the way data are gathered and interpreted critically to speed up decision-making and reduce expense and time. Distributed Acoustic Sensing (DAS) has been increasingly utilized to build relationships in complex geophysics environments by utilizing continuous measurement along fiber optic cables with high spatial resolution and a frequency response of up to 10 KHz. DAS, as fiber optic technology examining backscattered light from a laser emitted inside the fiber and measuring strain changes, enables the performance of subsurface imaging in terms of real-time monitoring for Vertical Seismic Profiling (VSP), reservoir monitoring, and microseismic event detection. This review examines the most widely used fiber optic cables employed for DAS acquisition, namely Single-Mode Fiber (SMF) and Multi-Mode Fiber (MMF), with the different deployments and scopes of data used in geophysics exploration. Over the years, SMF has emerged as a preferred type of fiber optic cable utilized for DAS acquisition and, in most applications examined in this review, outperformed MMF. On the other side, MMF has proven to be preferable when used to measure distributed temperature. Finally, the fiber optic cable deployment technique and acquisition parameters constitute a pivotal preliminary step in DAS data preprocessing, offering a pathway to improve imaging resolution based on DAS measurement as a future scope of work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.