Abstract
Integration of LANDSAT multispectral scanner (MSS) data with 30 m U.S. Geological Survey (USGS) digital terrain data was undertaken to quantify and reduce the topographic effect on imagery of a forested mountain ridge test site in central Pennsylvania. High Sun angle imagery revealed variation of as much as 21 pixel values in data for slopes of different angles and aspects with uniform surface cover. Large topographic effects were apparent in MSS 4 and 5 was due to a combination of high absorption by the forest cover and the MSS quantization. Four methods for reducing the topographic effect were compared. Band ratioing of MSS 6/5 and MSS 7/5 did not eliminate the topographic effect because of the lack of variation in MSS 4 and 5 radiances. The three radiance models examined to reduce the topographic effect required integration of the digital terrain data. Two Lambertian models increased the variation in the LANDSAT radiances. The nonLambertian model considerably reduced (86 per cent) the topographic effect in the LANDSAT data. The study demonstrates that high quality digital terrain data, as provided by the USGS digital elevation model data, can be used to enhance the utility of multispectral satellite data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.