Abstract

AbstractIn coastal China, there is an urgent need to increase land for agriculture. One solution is land reclamation from coastal tidelands, but soil salinization poses a problem. Thus, there is need to map saline areas and identify appropriate management strategies. One approach is the use of digital soil mapping. At the first stage, auxiliary data such as remotely sensed multispectral imagery can be used to identify areas of low agricultural productivity due to salinity. Similarly, proximal sensing instruments can provide data on the distribution of soil salinity. In this study, we first used multispectral QuickBird imagery (Bands 1–4) to provide information about crop growth and then EM38 data to indicate relative salt content using measurements of apparent soil electrical conductivity (ECa) in the horizontal (ECh) and vertical (ECv) modes of operation. Second, we used a fuzzy k‐means (FKM) algorithm to identify three salinity management zones using the normalized difference vegetation index (NDVI), ECh and ECv/ECh. The three identified classes were statistically different in terms of auxiliary and topsoil properties (e.g. soil organic matter) and more importantly in terms of the distribution of soil salinity (ECe) with depth. The resultant three classes were mapped to demonstrate that remote and proximally sensed auxiliary data can be used as surrogates for identifying soil salinity management zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.