Abstract

Differential games are a combination of game theory and optimum control methods. Their solutions are based on Bellman's principle of optimality. In this paper, the zero-sum differential game theory has been used for the purposes of controlling a mechatronic object: a single-link manipulator. In this case, analytical solutions are unavailable, thus approximate solutions were used. Two approximation methods were compared with the use of numerical simulations and selected quality indicators. The results confirm previous assumptions and the connection between the differential game theory and <i>H</i><sub>∞</sub> control problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.