Abstract

The aim of this study is to compare different resins regarding their separation and pre-concentration efficiency for uranium from aqueous solutions and its subsequent radiometric determination by liquid scintillation counting (LSC). The different types of the investigated resins include: (a) a pure cation-exchange resin (Dowex Marathon C), (b) a complex forming resin (Chelex 100) and (c) an impregnated resin (5% diethylene glycol succinate on Chromosorb W-H). The radiometric measurements were performed after mixing of the pre-concentrated aqueous phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, salinity (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions or humic acid and silica colloids) on the separation recovery have been investigated at constant uranium/radioactivity concentration. According to the experimental results the maximum chemical recovery differs significantly from one resin to another as a function of either, pH or the other chemical parameters. The optimum pH is found to be 8, 4 and 8 for Marathon C, Chelex-100 and diethylene glycol succinate, respectively. On the other hand, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) result in a significant decrease of the chemical recovery of uranium, particularly for Marathon C and the diethylene glycol succinate impregnated resins. Generally, among the studied resins Chelex 100 was superior regarding chemical recovery, selectivity, regeneration and reuse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call