Abstract

An electron strongly coupled to the LO-phonon in an asymmetric quantum dot has been considered. The system has a central impurity and it is under electric and magnetic fields. The eigenenergies and eigenfunctions of the ground and the first-excited states of the electron have been calculated using the Pekar variational method. Entropy of the system for different values of Coulomb impurity parameter, electron-LO phonon coupling strength, dispersion coefficient and electric field have been studied. Two entropies, Shannon and Gaussian entropy have been employed. It is found that the entropy has the oscillatory periodic evolution as function of the time due to the confinement form. It is deduced that the entropies increase with enhancing Coulomb impurity parameter, electron-LO phonon coupling strength and dispersion coefficient. With increasing electron-LO phonon coupling strength, the entropies decrease. The control of the coherence of the system can be done with the modulation of the electric field, the Coulomb bound potential, dispersion coefficient and electron-LO phonon coupling strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.