Abstract
Electron momentum spectroscopy (EMS) studies of the valence shells of [1.1.1]propellane, 1,3-butadiene, ethylene oxide and cubane are reviewed. Binding energy spectra were measured in the energy regime of 3·5–46·5 eV over a range of different target electron momenta, so that momentum distributions (MDs) could be determined for each ion state. Each experimental electron momentum distribution is compared with those calculated in the plane wave impulse approximation (PWIA) using both a triple-? plus polarisation level self-consistent field (SCF) wave function and a further range of basis sets as calculated using density functional theory (DFT). A critical comparison between the experimental and theoretical momentum distributions allows us to determine the ‘optimum’ wave function for each molecule from the basis sets we studied. This ‘optimum’ wave function then allows us to investigate chemically or biologically significant molecular properties of these molecules. EMS-DFT also shows promise in elucidating the character of molecular orbitals and the hybridisation state of atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.