Abstract

Objective: The objective of this investigation is to develop mathematical equation to understand the impact of variables and establish statistical control over transdermal iontophoretic delivery of tacrine hydrochloride. In addition, possibility of using conductivity measurements as a tool of predicting ionic mobility of the participating ions for the application of iontophoretic delivery was explored.Methods: Central composite design was applied to study effect of independent variables like current strength, buffer molarity, and drug concentration on iontophoretic tacrine permeation flux. Molar conductivity was determined to evaluate electro-migration of tacrine ions with application of Kohlrausch’s law.Results: The developed mathematic equation not only reveals drug concentration as the most significant variable regulating tacrine permeation, followed by current strength and buffer molarity, but also is capable to optimize tacrine permeation with respective combination of independent variables to achieve desired therapeutic plasma concentration of tacrine in treatment of Alzheimer’s disease. Moreover, relative higher mobility of sodium and chloride ions was observed as compared to estimated tacrine ion mobility.Conclusions: This investigation utilizes the design of experiment approach and extends the primary understanding of imapct of electronic and formulation variables on the tacrine permeation for the formulation development of iontophoretic tacrine delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call