Abstract

Silicon Raman lasers and amplifiers are the only silicon-based, monolithic device structures in which optical gain has been unambiguously observed. The main limitation on this gain is optical absorption due to free carriers, generated by two photon absorption. Here we explore a means to mitigate carrier effects via defect engineering. The optical and electrical properties of the defected silicon waveguides are modeled for both a uniform defect distribution and a remote, localized defect distribution. Simulation results indicate that a uniform defect distribution provides no improvement with any increase in net gain provided solely by surface modification. In contrast, for devices with remote defect volumes the reduction of carrier lifetime and limited optical absorption results in a significant improvement to net gain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call