Abstract

The purpose of the study is to improve the performance of intelligent football training. Based on deep learning (DL), the training of football players and detection of football robots are analyzed. First, the research status of the training of football players and football robots is introduced, and the basic structure of the neuron model and convolutional neural network (CNN) and the mainstream framework of DL are mainly expounded. Second, combined with the spatial stream network, a CNN-based action recognition system is constructed in the context of artificial intelligence (AI). Finally, by the football robot, a field line detection model based on a fully convolutional network (FCN) is proposed, and the effective applicability of the system is evaluated. The results demonstrate that the recognition effect of the dual-stream network is the best, reaching 92.8%. The recognition rate of the timestream network is lower than that of the dual-stream network, and the maximum recognition rate is 88%. The spatial stream network has the lowest recognition rate of 86.5%. The processing power of the four different algorithms on the dataset is stronger than that of the ordinary video set. The recognition rate of the time-segmented dual-stream fusion network is the highest, which is second only to the designed network. The recognition rate of the basic dual-stream network is 88.6%, and the recognition rate of the 3D CNN is the lowest, which is 86.2%. Under the intelligent training system, the recognition accuracy rates of jumping, kicking, grabbing, and starting actions range to 97.6, 94.5, 92.5, and 89.8% respectively, which are slightly lower than other actions. The recognition accuracy rate of passing action is 91.3%, and the maximum upgrade rate of intelligent training is 25.7%. The pixel accuracy of the improved field line detection of the model and the mean intersection over union (MIoU) are both improved by 5%. Intelligent training systems and the field line detection of football robots are more feasible. The research provides a reference for the development of AI in the field of sports training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.