Abstract

Abstract: Computer-aided drug design has an important role in drug development and design. It has become a thriving area of research in the pharmaceutical industry to accelerate the drug discovery process. Deep learning, a subdivision of artificial intelligence, is widely applied to advance new drug development and design opportunities. This article reviews the recent technology that uses deep learning techniques to ameliorate the understanding of drug-target interactions in computer-aided drug discovery based on the prior knowledge acquired from various literature. In general, deep learning models can be trained to predict the binding affinity between the protein-ligand complexes and protein structures or generate protein-ligand complexes in structure-based drug discovery. In other words, artificial neural networks and deep learning algorithms, especially graph convolutional neural networks and generative adversarial networks, can be applied to drug discovery. Graph convolutional neural network effectively captures the interactions and structural information between atoms and molecules, which can be enforced to predict the binding affinity between protein and ligand. Also, the ligand molecules with the desired properties can be generated using generative adversarial networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.