Abstract
In this work, we have developed a novel deep learning inverse solution or identification method to determine and identify the impact load conditions of shell structures based on their final state of damage or inelastic deformation. This artificial intelligence approach offers a practical solution to solve the inverse problem of engineering failure analysis based on final material and structure damage state and permanent plastic deformation. More precisely, the machine learning inverse problem solver may provide a practical solution to characterize failure load parameters and conditions based on the final permanent plastic deformation distribution of the shell structure that is under examination. In this work, we have demonstrated that the proposed deep learning method can accurately identify a “practically unique” static loading condition as well as the impact dynamic loading condition for a hemispherical shell structure based the permanent plastic deformation after the impact event as the forensic signatures. The data-driven based method developed in this work may provide a powerful tool for forensically diagnosing, determining, and identifying damage loading conditions for engineering structures in various accidental failure events, such as car crashes, pressure vessel failure, or thin-walled infrastructure structure collapses. The machine learning inverse problem solver developed here in this work may have potential impacts on general forensic material and structure failure analysis based on final permanent plastic deformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.