Abstract

Recently, the methodology of deep learning is used to improve the calculation accuracy of the Reynolds-averaged Navier-Stokes (RANS) model. In this paper, a neural network is designed to predict the Reynolds stress of a channel flow of different Reynolds numbers. The rationality and the high efficiency of the neural network is validated by comparing with the results of the direct numerical simulation (DNS), the large eddy simulation (LES), and the deep neural network (DNN) of other studies. To further enhance the prediction accuracy, three methods are developed by using several algorithms and simplified models in the neural network. In the method 1, the regularization is introduced and it is found that the oscillation and the overfitting of the results are effectively prevented. In the method 2, y+ is embedded in the input variable while the combination of the invariants is simplified in the method 3. From the predicted results, it can be seen that by using the first two methods, the errors are reduced. Moreover, the method 3 shows considerable advantages in the DNS trend and the smoothness of a curve. Consequently, it is concluded that the DNNs can predict effectively the anisotropic Reynolds stress and is a promising technique of the computational fluid dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.