Abstract
Most neurodegenerative diseases such as Alzheimer's and Parkinson's are life-threatening, critical, and incurable affecting mainly the elderly population. Early diagnosis is challenging as disease phenotype is very crucial for predicting, preventing the progression, and effective drug discovery. In the last few years, Deep learning (DL) based neural networks are the state-of-the-art models deployed in industries and academics across different areas like natural language processing, image analysis, speech recognition, audio classification, and many more. It has been slowly realized that they have a high potential in medical image analysis and diagnostics and medical management in general. As this field is vast and expanding rapidly, we have put focused on existing DL-based models to detect Alzheimer's and Parkinson's in particular. This study gives a summary of related medical examinations for these diseases. Frameworks and applications of many deep learning models have been discussed. We have given precise notes on pre-processing techniques used by various studies for MRI image analysis. An overview of the application of DL-based models in different stages of medical image analysis has been conferred. It has been realized from the review that more studies are focused on Alzheimer's compared to Parkinson's disease. Additionally, we have tabulated the various public datasets available for these diseases. We have highlighted the potential use of a novel biomarker for the early diagnosis of these disorders. Also, some challenges and issues in implementing deep learning techniques for the detection of these diseases have been addressed. Finally, we concluded with some directions for future research regarding deep learning in the diagnosis of these diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current Medical Imaging Formerly Current Medical Imaging Reviews
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.