Abstract
Abstract Glioblastoma multiforme (GBM) is the most aggressive brain cancer in adults, with 3.2-3.4 cases per 100 thousand. In the US, brain cancer does not rank in the top 10 causes of death, but it remains in the top 15. Therefore, this research proposes a fuzzy-based GRUCoxPH model to identify missense variants associated with a high risk of all-cause mortality in GBM. The study combines various models, including fuzzy logic, Gated Recurrent Units (GRUs), and Cox
Proportional Hazards Regression (CoxPh), to identify potential risk factors. The dataset is derived from TCGA-GBM clinicopathological information and mutations to create four risk score models: GRU, CoxPH, GRUCoxPHAddition, and GRUCoxPHMultiplication, analyzing 9 risk factors of the dataset. The Fuzzy-based GRUCoxPH model achieves an average accuracy of
86.97%, outperforming other models. This model demonstrates its ability to classify and identify missense variants associated with mortality in GBM, potentially advancing cancer research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.