Abstract

BackgroundTaking facial and intraoral clinical photos is one of the essential parts of orthodontic diagnosis and treatment planning. Among the diagnostic procedures, classification of the shuffled clinical photos with their orientations will be the initial step while it was not easy for a machine to classify photos with a variety of facial and dental situations. This article presents a convolutional neural networks (CNNs) deep learning technique to classify orthodontic clinical photos according to their orientations.MethodsTo build an automated classification system, CNNs models of facial and intraoral categories were constructed, and the clinical photos that are routinely taken for orthodontic diagnosis were used to train the models with data augmentation. Prediction procedures were evaluated with separate photos whose purpose was only for prediction.ResultsOverall, a 98.0% valid prediction rate resulted for both facial and intraoral photo classification. The highest prediction rate was 100% for facial lateral profile, intraoral upper, and lower photos.ConclusionAn artificial intelligence system that utilizes deep learning with proper training models can successfully classify orthodontic facial and intraoral photos automatically. This technique can be used for the first step of a fully automated orthodontic diagnostic system in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.