Abstract
Resource assignment and scheduling models provides an automatic and fast decision support system for wildfire suppression logistics. However, this process generates challenging optimization problems in many real-world cases, and the computational time becomes a critical issue, especially in realistic-size instances. Thus, to overcome that limitation, this work studies and applies a set of decomposition techniques such as augmented Lagrangian, branch and price, and Benders decomposition’s to a wildfire suppression model. Moreover, a reformulation strategy, inspired by Benders’ decomposition, is also introduced and demonstrated. Finally, a numerical study comparing the behavior of the proposals using different problem sizes is conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.