Abstract
ABSTRACT The Debye–Huckel and Bronsted-Bjerrum theory has been applied to supported liquid membrane process to understand the effect of ionic strength on separation factor. The effect of ionic strength due to different salts and their concentration on the separation factor of Cu(II) and Zn(II) by supported liquid membrane using Di-2 ethyl-hexyl phosphoric acid (D2EHPA) as a mobile carrier has been studied. For those studies, different salts, i.e., NaCl, NaNO3, NaClO3, Na2SO4, and CH3COONa, have been used. A mathematical model for the dependency of separation factor of Cu(II) and Zn(II) on ionic strength considering Debye–Huckel theory and Bronsted–Bjerrum theory has been developed. Experiments were carried out using a batch-type permeator of micro-porous polypropylene thin sheet as the solid support for the liquid membrane in the presence of different ionic strength of anions. The calculated separation factor is well agreed with the obtained results within 95% confidence interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.