Abstract
This study simulates the kinematic behavior of sliding blocks of rock in the earthquake-induced Tsaoling landslide using seismic discontinuous deformation analysis (DDA). We assume sliding rocks are elastic blocks. Detailed joint shear strength parameters are set in DDA in a manner compatible with what is known about the Tsaoling landslide mechanisms. Landslide run-out distance, information from survivors, and the post-failure topography are used to constrain the computational results. Calculations demonstrate that sliding rocks from the ground surface decoupled from those near the basal shear surface during the landslide. Local residents survived because surficial rocks were never deeply buried during the landslide. Additionally, shear strength parameters of material in the deposition area strongly govern final deposit topography. Computational results correlate well with actual post-failure topography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.