Abstract

Innovations in computer technology have made possible continuous on-line monitoring of partial discharge (PD) activities. The power industry aims to assess the condition of power system equipment through on-line monitoring of PD activities. This involves long-term continuous data recording and it is very difficult to extract useful information from such a large amount of raw data, particularly if it is done manually. Instead, data mining can be applied in solving this problem. Data mining can be categorized into predictive modelling and descriptive modelling. In this paper, work was mainly focused on predictive data mining, which is classification of PD. The back propagation neural network (BPN), self-organizing map (SOM) and support vector machine (SVM) were used for classification and compared. Results indicate SVM is the best method in terms of classification accuracy and processing speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.