Abstract

AbstractThe increasing integration of variable renewable energy resources through power electronics has brought about substantial changes in the structure and dynamics of modern power systems. In response to these transformations, there has been a surge in the development of tools and algorithms leveraging real‐time computational power to enhance system operation and stability. Data‐driven methods have emerged as practical approaches for extracting reliable representations from non‐linear system data, enabling the identification of dynamics and system parameters essential for analysing stability and ensuring reliable operation. This study provides a comprehensive review of recent contributions in the literature concerning the application of data‐driven identification, analysis, and control methods in various aspects of power system operation. Specifically, the focus is on frequency support, power oscillation detection, and damping, which play crucial roles in maintaining grid stability. By discussing the challenges posed by parametric uncertainties, load and source variability, and reduced system inertia, this review sheds light on the opportunities for future research endeavours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.