Abstract

Condition monitoring assesses the operational health of rotating machinery, in order to provide early and accurate warning of potential failures such that preventative maintenance actions may be taken. To achieve this target, manufacturers start taking on the responsibilities of engine condition monitoring, by embedding health-monitoring systems within each engine unit and prompting maintenance actions when necessary. Several types of condition monitoring are used including oil debris monitoring, temperature monitoring, and vibration monitoring. Among them, vibration monitoring is the most widely used technique. Machine vibro-acoustic signatures contain pivotal information about its state of health. The current work focuses on one part of the diagnosis stage of condition monitoring for engine bearing health monitoring as bearings are critical components in rotating machinery. A plethora of signal processing tools and methods applied at the time domain, the frequency domain, the time–frequency domain, and the time-scale domain have been presented in order to extract valuable information by proposing different diagnostic features. Among others, an emerging interest has been reported on modeling rotating machinery signals as cyclo-stationary, which is a particular class of nonstationary stochastic processes. The goal of this paper is to propose a novel approach for the analysis of cyclo-nonstationary signals based on the generalization of indicators of cyclo-stationarity (ICNS) in order to cover the speed-varying conditions. The effectiveness of the approach is evaluated on an acceleration signal captured on the casing of an aircraft engine gearbox, provided by SAFRAN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.