Abstract
AbstractBased on the interaction of cupferron and lead(II) complex [Cup‐Pb(II)] with double‐stranded DNA (dsDNA) a new voltammetric method for the detection of DNA was described in this paper. In pH 4.0 HAc‐hexamine buffer solution, [Cup‐Pb(II)] complex showed a sensitive second order derivative polarographic reductive peak at ‐0.554 V (vs. SCE). After the addition of dsDNA into [Cup‐Pb(II)] mixture solution the reductive peak current decreased with the positive shift of reductive peak potential, which was the typical characteristic of intercalation mode. Under the optimum conditions, the decrease of reductive peak current was directly proportional to the dsDNA concentration in the range from 1.0 to 25.0 mg/L with the linear regression equation as ΔIp″ (nA) = 129.30 + 62.51 C (mg/L) (n = 13, γ = 0.991). The detection limit of 0.90 mg/L (3σ) and the relative standard derivation (RSD) of 2.43% for 10 parallel determinations of 10.0 mg/L dsDNA were found. The method was successfully applied to synthetic samples with good results, and the stoichiometry of dsDNA with [Cup‐Pb(II)] complex was calculated by the voltammetic data with the binding number as 2 and the binding constant as 2.82 × 109.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.