Abstract
In recent years, sequence-specific clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems have been widely used in genome editing of various cell types and organisms. The most developed and broadly used CRISPR-Cas system, CRISPR-Cas9, has benefited from the proof-of-principle studies for a better understanding of the function of genes associated with drug absorption and disposition. Genome-scale CRISPR-Cas9 knockout (KO) screen study also facilitates the identification of novel genes in which loss alters drug permeability across biological membranes and thus modulates the efficacy and safety of drugs. Compared with conventional heterogeneous expression models or other genome editing technologies, CRISPR-Cas9 gene manipulation techniques possess significant advantages, including ease of design, cost-effectiveness, greater on-target DNA cleavage activity and multiplexing capabilities, which makes it possible to study the interactions between membrane proteins and drugs more accurately and efficiently. However, many mechanistic questions and challenges regarding CRISPR-Cas9 gene editing are yet to be addressed, ranging from off-target effects to large-scale genetic alterations. In this review, an overview of the mechanisms of CRISPR-Cas9 in mammalian genome editing will be introduced, as well as the application of CRISPR-Cas9 in studying the barriers to drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.