Abstract
The remarkable damping over a broad temperature range and thermal insulation properties of cork make it a suitable material to be applied on integrated and surface damping treatments in sandwich structures, improving its dynamic behavior. Experimental analysis and numerical modeling of sandwich structures with cork compound layers is therefore essential for a better understanding of the cork compound influence on the dynamic properties of a layered structure. In this article, an evaluation study on the dynamic properties of a set of sandwich plates with cork compound cores inside two aluminium faces is performed. For this purpose, three test samples were assembled following the described configuration, using cork compounds with different properties (density, granulometry and thickness). To numerically simulate these layered plates, a partial layerwise plate finite element (FE), with a multilayer configuration, was developed and integrated in a MATLAB FE code. The constitutive relation of the cork compounds is included in the FE model by using the material complex modulus in a direct frequency analysis procedure. For the different cork compounds hereby considered, the extensional complex modulus was previously identified by using a specific experimental methodology which simulates a semidefinite two degrees of freedom system, where the cork compound test sample represents the complex stiffness. From the complex modulus data, both extensional storage modulus and loss factor of the cork compound were obtained. The experimental evaluation of the dynamic properties of the sandwich plates was performed carrying out an experimental modal analysis on each test specimen, being measured a set of frequency response functions (FRFs). Additionally, the developed layerwise plate element was validated through the comparison between the measured driving point FRFs and the FE method predicted ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.