Abstract

Stress reduction factor, λ, is a dimensionless coefficient in two-dimensional (2D) analysis based on convergence confinement method (CCM) of tunnel which represents stress relaxation in the tunnel walls at different excavation steps. The aim of this paper is to look into the influencing factors on parameter λ around the tunnel walls using finite difference code in order to improve the accuracy of the CCM. For this purpose, four different ground types with various tunnel radii, depths and cross section shapes are considered. Finally, the 2D analysis using uniform and variable stress reduction factors determined in this paper is compared with the 3D analysis of the tunnel. The results of this study enhance our understanding of the role of geometrical and soil material parameters of tunnel on stress relaxation around tunnel walls. The tunnel depth, soil type and tunnel shape have great influence on λ. Variable stress reduction factor enables the convergence–confinement method to predict the realistic behavior of third dimension of the tunnel and can also be used as the best alternative to 3D models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.