Abstract

AbstractMaterializing Continuum Damage Mechanics (CDM), numerical modeling of discrete internal cracks, namely central bursts, in direct forward extrusion process is presented. Accordingly, in a thermodynamically consistent setting, a local Lemaitre variant damage model with quasi‐unilateral evolution is coupled with hyperelastic‐plasticity. The formulations are constructed in the principal axes where simultaneous local integration schemes are efficiently developed. To this end, the framework is implemented as ABAQUS/VUMAT subroutine to be used in an explicit FE solution scheme, and utilized in direct forward extrusion simulations for bearing steel, 100Cr6. Discontinuous cracks are obtained with the element deletion procedure, where the elements reaching the critical damage value are removed from the mesh. The periodicity of the cracks shows well accordance with the experimental facts. The investigations reveal that, application of the quasi‐unilateral conditions together with the crack closure parameter has an indispensable effect on the damage accumulation zones by determining their internal or superficial character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.