Abstract

A comprehensive study of the application of continuous zone electrophoresis to preparative separation of proteins in free solution is presented. First, the influence of electric field strength, buffer residence time in the chamber, sample flow rate, and sample concentration on separation resolution and throughput were studied. Using multiple injections of sample into the electrophoresis chamber, a throughput of 500 mg protein/h was achieved for partially purified model proteins. Experiments on Escherichia coli crude extracts yielded a fivefold purification of beta-galactosidase along with a simultaneous separation of proteins from cell debris in a single step. Experiments correlating the electrophoretic mobility in continuous electrophoresis with the elution behavior in ion-exchange chromatography were performed on more than a dozen proteins which conclusively showed that separation of proteins in continuous zone electrophoresis is governed by net surface charge. Based on these results, the fraction numbers in which the proteins eluted could be correctly predicted. Proteins and enzymes with differences >0.5 M elution molarities in ion-exchange chromatography were separated by continuous zone electrophoresis on a preparative scale (mg/h or g/h) with >90% recovery. This corresponds to a preparative scale separation of proteins and enzymes which differ in apparent electrophoretic mobility by only 0.70 x 10(-5) cm(2)/V . s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.