Abstract

Cluster Variation Method (CVM) has been widely recognized as one of the most reliable theoretical tools to study phase equilibria in metallic alloy systems. The conventional CVM, however, does not allow atomic local displacements and, therefore, calculated results often encounter various inconveniences such as the overestimation of transition temperatures. Continuous Displacement Cluster Variation Method (CDCVM) was proposed to circumvent such deficiencies of the conventional CVM. Preliminary studies on an order-disorder phase diagram based on CDCVM indicate that the transition temperature is shifted downward reproducing experimental tendencies. In the present study, lattice thermal vibration effects are also incorporated through Morse potential. It is concluded that the local lattice distortion effects are quite effective to reduce the transition temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call