Abstract
Quantum maximal-distance-separable (MDS) codes form an important class of quantum codes. To get $q$-ary quantum MDS codes, it suffices to find linear MDS codes $C$ over $\mathbb{F}_{q^2}$ satisfying $C^{\perp_H}\subseteq C$ by the Hermitian construction and the quantum Singleton bound. If $C^{\perp_{H}}\subseteq C$, we say that $C$ is a dual-containing code. Many new quantum MDS codes with relatively large minimum distance have been produced by constructing dual-containing constacyclic MDS codes (see \cite{Guardia11}, \cite{Kai13}, \cite{Kai14}). These works motivate us to make a careful study on the existence condition for nontrivial dual-containing constacyclic codes. This would help us to avoid unnecessary attempts and provide effective ideas in order to construct dual-containing codes. Several classes of dual-containing MDS constacyclic codes are constructed and their parameters are computed. Consequently, new quantum MDS codes are derived from these parameters. The quantum MDS codes exhibited here have parameters better than the ones available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.