Abstract

This work deals with Computer-Generated Rainbow Holograms (CGRHs), which can restore the 3D images under white light. They are devoted to include in Diffractive Optically Variable Image Devices (DOVIDs) that are currently widely used for security needs. CGRHs prevent counterfeiting due to the complexity of recreation on the one hand and allow the simple identification at the first (visual) level of verification on the other hand. To record it the Electron Beam Lithography (EBL) is used. The CGRH computation process is conventionally divided on two parts: synthesis and recording. On the synthesis stage, firstly, the geometrical and optical constants of recording scheme are determined, secondly, the basic parameters accounting for discretization of ID in hologram plane are defined and, finally, the calculation of the Interferogram Data (ID) - the array of Bipolar Intensity (BI) values - is carried out. This calculation is performed separately in each independent horizontal slice of object space and hologram plane. On the recording stage a suitable quantization parameters are chosen and transformation of ID into the multilevel rectangle data appropriate for EBL is accomplished. The investigations on optimization of synthesis and recording of the multilevel CGRHs of 3D images integrated in Polygrams are presented here. So the rules for definition of the appropriate discretization parameters were finding out. Advantages of using non-linear quantization that implies condensing of quantization levels near the BI zero were explored. The random deviation of location and direction of elemental hybrid radiating area was applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.