Abstract

To investigate the feasibility and accuracy of a drill template based on computer-aided design (CAD) and 3D printing technology for the placement of screws in Locking Compression Pediatric Hip Plate (LCP-PHP). LCP-PHP was used in 11 children [5 with femoral neck fracture and 6 with development dysplasia of hip (DDH)]. Using the CT data, the proximal femur model was created by a 3D printer. Fracture reduction and the placement of the screw in the femoral neck and the LCP-PHP were simulated by the computer. The navigation template was designed by the software to match the proximal femur. After the feasibility of the 3D model operation was demonstrated before the operation, the guide pins and the screws were inserted with the help of the navigate template in the operation. During surgery, the navigation template for each case was matched to the bony markers of the proximal femur. With the help of the template, in femoral neck fracture cases, three screws could be accurately inserted into the femoral neck to implant the LCP-PHP and stabilize the fracture. The template for DDH includes all operation parameters and steps for proximal femoral varus rotation and shortening osteotomy, which made the surgery much easier to perform. Radiographs taken after surgery showed that the postoperative results closely corresponded to the preoperative computer simulation. The average time taken for LCP-PHP placement was 26.5min; radiography was used during surgery only for an average of 6.0 times. Postoperative radiographs showed good results. With the use of CAD and 3D printing technology, accurate placement of individualized navigation template of LCP-PHP can be achieved. This technology can reduce intraoperative damage to the femoral neck epiphysis, decrease operation time, reduce intraoperative hemorrhage, and decrease radiation exposure to patients and personnel during the surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.