Abstract
Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, and elemental dot-mapping images. Nanosheet morphology was recognized for both CoFe LDH and CoCeFe ternary LDH from scanning electron microscopy and transmission electron microscopy micrographs. In the following, a dispersive solid phase extraction (DSPE) method was developed using the synthesized CoCeFe ternary LDH as a sorbent for extracting perfluorooctanesulfonic acid (PFOS) from wastewater samples. For the selective analysis of PFOS, high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) in multiple reaction monitoring mode was used. Analytical parameters such as the limit of detection equal to 0.02 μg/L, with a linear range of 0.05–300 μg/L, the limit of quantification equal to 0.05 μg/L, and an enrichment factor equal to 23.3 were achieved for PFOS at the optimized condition (sorbent: 5 mg of CoCeFe ternary LDH, eluent type and volume: 150 μL mobile phase, pH: 3, adsorption time: 3 min, and desorption time: 5 min). The developed strategy for the analysis of PFOS was tested in real wastewater samples, including copper mine and petrochemical wastewater. The amount of analytes in real samples was calculated using the standard addition method, and good relative recovery in the range of 86%–105% was obtained. The main novelty of this research is the application of CoCeFe ternary LDH to extract the PFOS from wastewater using the DSPE method for determination by HPLC-MS/MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.