Abstract

Coal fly ash accumulation, global warming, and heavy metal-contaminated water environments are three primary environmental concerns. Porous geopolymers are economical porous adsorbents that can be produced using coal fly ash as a raw material and employed for heavy metal removal from water. However, residual alkalis on the geopolymer can lead to extreme increases in pH and cause environmental stresses, which limits the large-scale production and application of geopolymers in industries and environments. A green approach to alleviating the high basicity of geopolymers through CO2 exposure is proposed, with CO2 adsorption experiments as well as Zn removal batch and column experiments conducted to evaluate the practicality of the synergistic strategy. CO2 adsorption experiments show the CO2 capture capacity of fresh geopolymer (F@PG) is 0.80 mmol g−1, greater than that of the conventionally washed geopolymer (W@PG, 0.26 mmol g−1), with the pH of the geopolymer decreasing after both washing and CO2 exposure. Batch experiments suggest neither washing nor CO2 exposure cause a significant change in the Zn adsorption capacity of the geopolymer; column experiments show the CO2-exposed geopolymer (C@PG) has a pH < 9.5 and a satisfactory Zn removal performance similar to W@PG, but F@PG with a pH ∼12 results in a conversion of Zn to anionic forms and a decrease in Zn removal efficiency. These results indicate CO2 exposure is a practical method to decrease the pH of geopolymers for applications related to heavy metal-contaminated water treatment and provide a large-scale industrial option for coal fly ash consumption and CO2 emission reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.