Abstract
A study of clutter reduction techniques for detection of metallic and non-metallic (low dielectric constant) targets behind a brick wall with the help of ultra-wideband (UWB) through wall imaging system is presented. It is known that sometimes the clutter level is comparable to the level of target reflection that makes it difficult to detect the target correctly. Detection of low dielectric constant materials becomes more difficult due to low reflection from such targets. Therefore there is a need to analyse various clutter removal techniques and check the performance of these techniques for enhancement of target signal-to-clutter ratio. For this purpose, an UWB stepped frequency wave radar is indigenously assembled with the use of vector network analyser, which works in the frequency range of 3.95–5.85 GHz. An experiment is carried out for detection of metal as well as Teflon (low dielectric constant) targets with the application of clutter reduction techniques. The authors have considered statistical-based techniques like singular value decomposition, principle component analysis, factor analysis and independent component analysis (ICA) for clutter removal. It is observed that the signal-to-clutter ratio for metal target detection is quite enhanced by all the four techniques, whereas only ICA is able to enhance the signal-to-clutter ratio for a low dielectric constant target like Teflon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.