Abstract

AbstractUnderstanding multiscale rainfall variability in the South Pacific convergence zone (SPCZ), a southeastward-oriented band of precipitating deep convection in the South Pacific, is critical for both the human and natural systems dependent on its rainfall, and for interpreting similar off-equatorial diagonal convection zones around the globe. A k-means clustering method is applied to daily austral summer (December–February) Tropical Rainfall Measuring Mission (TRMM) satellite rainfall to extract representative spatial patterns of rainfall over the SPCZ region for the period 1998–2013. For a k = 4 clustering, pairs of clusters differ predominantly via spatial translation of the SPCZ diagonal, reflecting either warm or cool phases of El Niño–Southern Oscillation (ENSO). Within each of these ENSO phase pairs, one cluster exhibits intense precipitation along the SPCZ while the other features weakened rainfall. Cluster temporal behavior is analyzed to investigate higher-frequency forcings (e.g., the Madden–Julian oscillation and synoptic-scale disturbances) that trigger deep convection where SSTs are sufficiently warm. Pressure-level winds and specific humidity from the Climate Forecast System Reanalysis are composited with respect to daily cluster assignment to investigate differences between active and quiescent SPCZ conditions to reveal the conditions supporting enhanced or suppressed SPCZ precipitation, such as low-level poleward moisture transport from the equator. Empirical orthogonal functions (EOFs) of TRMM precipitation are computed to relate the “modal view” of SPCZ variability associated with the EOFs to the “state view” associated with the clusters. Finally, the cluster number is increased to illustrate the change in TRMM rainfall patterns as additional degrees of freedom are permitted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call