Abstract

This paper presents the application of two classical models to high-resolution electric field measurements carried out in a hollow cathode discharge operated in pure hydrogen plasma. The electric field determination has been done via the Stark shifting and splitting of the 2S level of hydrogen, followed by optogalvanic detection. Two classical models, Rickards' and Wroński's, are applied to these measurements with the objective of obtaining a first estimation on the discharge dynamics. The chosen models provide an idea of the ions movement, their energy and their mean free path at the cathode fall region, as well as the electric field strength behaviour depending on the discharge characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.