Abstract

PurposeTo investigate the use of amorphous iron as the stator core material to increase the efficiency of electric machines in serialised production.Design/methodology/approachIn the design process of a new structure for the induction motor with a stator core made from amorphous iron it is necessary to apply the circuit method and the field‐circuit method. The use of the circuit method allows quick calculations of many versions of the designed motor, but the use of the field‐circuit method is necessary for verification of the maximal value of the flux density in the entire area of the cross‐sections of the motor core.FindingsA new construction for the small induction motor with the stator core made from amorphous iron was designed based on the classical structure of the four‐pole induction motor. In the designed motor a decrease of the electric energy costs was observed, which is much bigger than the material costs, and in effect lower total costs for the designed motor were obtained.Practical implicationsAccording to necessary changes in the motor construction, due to lower saturation limit for this material, the authors obtained a significant increase in the motor efficiency and a decrease in the total cost of the motor. The development of a new technology allows the cutting of amorphous magnetic materials and the production of electric motors from them.Originality/valueThis paper shows the possibility of using amorphous magnetic materials for stator core of small induction machines and the advantages of such construction for obtaining more efficient motor construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.