Abstract

Abstract“Devil tree saw dust”; a novel biosorbent has been utilised successfully for the removal of hexavalent chromium from contaminated water. Batch adsorption procedure is utilised to test the ability of saw dust as an adsorbent for hexavalent chromium (reduction coupled adsorption). The contribution of various parameters on sorption, such as contact time, sorbate concentration, pH of the medium and temperature were estimated and maximum uptake of hexavalent chromium from contaminated water was 333.33 mg g−1 at pH 2.0 and temperature of 35°C. Hexavalent chromium uptake from contaminated water followed the pseudo‐first‐order rate expression. The standard free energy change (ΔG0), standard enthalpy change (ΔH0) and standard entropy change (ΔS0) have also been evaluated and it has been concluded that the sorption was feasible, spontaneous and endothermic in nature. The process follows well Langmuir isotherm. Fourier Transform Infra‐Red (FTIR) spectroscopy and scanning electron microscopy (SEM) of hexavalent chromium loaded and unloaded saw dust were performed, SEM clearly indicates chromium adsorption. FTIR spectroscopy revealed the involvement of carbonyl, hydroxyl and amide groups on the cell surfaces in chromium binding. Very good adsorption capacity and low cost or cost free of devil tree saw dust makes this biosorbent as one of the best adsorbents for removal of hexavalent chromium from contaminated water. © 2012 Canadian Society for Chemical Engineering

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.